In thermodynamics, an isentropic process or isoentropic process (ισον = "equal" (Greek); εντροπία entropy = "disorder"(Greek)) is one in which for purposes of engineering analysis and calculation, one may assume that the process takes place from initiation to completion without an increase or decrease in the entropy of the system, i.e., the entropy of the system remains constant.[1][2] It can be proven that any reversible adiabatic process is an isentropic process.
Contents |
The Second law of thermodynamics states that,
where is the amount of energy the system gains by heating, is the temperature of the system, and is the change in entropy. The equal sign will hold for a reversible process. For a reversible isentropic process, there is no transfer of heat energy and therefore the process is also adiabatic. For an irreversible process, the entropy will increase. Hence removal of heat from the system (cooling) is necessary to maintain a constant internal entropy for an irreversible process in order to make it isentropic. Thus an irreversible isentropic process is not adiabatic.
For reversible processes, an isentropic transformation is carried out by thermally "insulating" the system from its surroundings. Temperature is the thermodynamic conjugate variable to entropy, thus the conjugate process would be an isothermal process in which the system is thermally "connected" to a constant-temperature heat bath.
An isentropic flow is a flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.
Note that energy can be exchanged with the flow in an isentropic transformation, as long as it doesn't happen as heat exchange. An example of such an exchange would be an isentropic expansion or compression, which entails work done on or by the flow.
For a closed system, the total change in energy of a system is the sum of the work done and the heat added,
The reversible work done on a system by changing the volume is,
where is the pressure and is the volume. The change in enthalpy () is given by,
Then for a process which is both reversible and adiabatic (i.e. no heat transfer occurs), , and so . This leads to two important observations,
Next, a great deal can be computed for isentropic processes of an ideal gas. For any transformation of an ideal gas, it is always true that
Using the general results derived above for and , then
So for an ideal gas, the heat capacity ratio can be written as,
For an ideal gas is constant. Hence on integrating the above equation, assuming a perfect gas, we get
Using the equation of state for an ideal gas, ,
also, for constant (per mole),
Thus for isentropic processes with an ideal gas,
Derived from: